Requirements Engineering: How to deal with Quality Requirements

CECS 590

1

Requirements Engineering – Outline

- WHY do we need Requirements Engineering and what is it?
- Principles: Definitions, process, roles, problem/solution view, artifact orientation
- System Models: Decomposition and abstraction, system views
- Frameworks: What reference structures can I use for requirements?
- Business Case Analysis: Why are we building this system?
- Stakeholders: Who are the people to talk to about requirements?
- Goals and Constraints: What are the major objectives for the system?
- System Vision: What exactly do we want to achieve?
- Domain Models: What are the surrounding systems ours interacts with?
- Usage Models: How will the system interact with the user?
- Software quality models: How to determine the quality characteristics?
- Quality requirements: How to specify which qualities need to be met?
- Process requirements: How to specify constraints for development?
- Towards a system specification: How to hand over to design?
- Quality assurance: How to ensure that RE is done in a good way?
- Change management: How to evolve requirements?

HOW TO ENSURE QUALITY

Recap time! Quality Models

- What are quality models?
- What examples did we look at?
- What do we do with them?

Philosophy

- AMDiRE concept model based on system model and quality model
- Behavior models are in the center for functional requirements and quality requirements

Classification of NFRs

- Process Requirements
- Deployment Requirements
- System Constraints
- Quality Requirements

Structured elicitation of quality requirements

- From system goals
- To scenarios
- To quality requirements

Classification in AMDiRE (Excerpt)

Overview of relevant Content Items

- 1. Process Requirements: Required characteristics of the process/ project e.g.: Use RUP as process model
- 2. Deployment Requirements: Demands for deployment

e.g.: strategy to be followed for data migration

3. System Constraints: System-related restrictions that don't necessarily results from functional goal.

E.g.: usage of specific technologies

4. Quality Requirements: desired quality characteristics of the system examples following

Quality principle in AMDiRE

Quality requirements across 3 levels of abstraction

- 1. Goals: declaration of intent
- 2. Usage Model: definition of interaction scenarios that
 - Shall eb supported (e.g. maintenance).
 - Shall be avoided (e.g. hacker attack).
 - → Compare goal/anti-goal
- → Allows for stepwise refinement of quality requirements
- → Allows to make abstract requirements measurable
- Quality Requirements: measurable/quantified quality requirements

Quality principle in AMDiRE

Quality requirements – goal modeling

Goal modeling recap:

- Goals are declarations of intent
- Usage of goals as rationale for requirements
- System Goals: System-related goals that target system characteristics, e.g.
 - Maintainability
 - Usability
 - **-** ...
- → Usage of goals as basis for behavioral characteristics/ quality requirements

Quality requirements – Generic Scenarios (1/3)

Usage Model recap:

- Interaction scnearios for modeling usage of the system by external actors (user, external system).
- Differentiation:
 - Use Cases for modeling usage and external functional behavior, e.g. the system-user interaction for a business processes
 - Generic Scenarios for modeling of quality characteristics that are perceivable in the external behavior

Generic Scenarios (simplified)

- Which non-fctl. motivated characteristics shall be enabled?
 - E.g.: Which maintenance activities shall be enabled?
- Which non-ftcl. characteristics shall be avoided?

E.g.: Which hacker attacks shall be avoided?

Quality requirements – Generic Scenarios (2/3)

- Allows to reduce quality to (nonfunctionally motivated) activities that shall be *enabled* or *avoided*.
- Generic scenarios support structured...
 - Elicitation of quality characteristics without having to immediately quantify
 - → "System shall be easy to maintain" (goal)
 - → "Which maintenance activities shall be supported?" (Generic Scenario)
 - Assessment of quality characeristics w.r.t. costs
 - → Execution of activities can be related to costs.
 - Evaluation whether non-fctl.
 Characteristics have been implemented
 - → Usage scenarios can be tested.

Quality requirements – Generic Scenarios (3/3)

×

×

Debugger

Refactoring

Example Generic Scenario

- Use the Cockburn template
- Specify interaction that is exemplary of how the system should behave for a quality characteristic tied to a functionality
- For example:
 - Interaction of the ATM with a visually impaired user
 - Alpine Adventure Tours example

Generic Scenarios: AAT Example

<<GenericScenario>> Attack by Injection (AAT Example)

Brief Description (optional)	An attacker succeeds to pass a malicious script inside an otherwise valid HTTP query string and gains unauthorised access to the network and system, including sensitive information.
recondition (optional)	Attacker successfully exploits different injection attacks to access the network, respectively the system through the network.
Postcondition (optional)	System accepts malicious injected scripts from the Attacker (accessing sensitive data).
Story (Generic Scenario)	 Attacker explores all public links on a web site and records them by the use of an automated tool (spider) Attacker experiments by requesting a variation on the URLs he spidered before. He sends parameters that include variations of script and records all responses that include unmodified versions of that script. After detecting a vulnerable parameter, the attacker creates exploit URLs and gets victims to click on them.
Involved Structural Element	-
Actor	Attacker

Exercise

- Which technique for quality requirements do you find more helpful?
- Refine one ATM quality goal
 - 1. as textual quality requirement with metric and evaluation and
 - 2. as generic scenario.

Evaluation with regard to challenges

- 1. Crosscutting Concerns
- → Interdependency with behavioral models clearly defined
- 2. Classification and structuring
- → Structured in Content Items
- 3. Elicitation, assessment and evaluation
- → Refinement of NFRs over 3 abstraction levels
- Assessment of NFRs:
 - Interdependency with other requirements modeled in behavioral models
 - Implications for implementation/costs representable
- → Specification of NFRs can be validated

Critical assessment

- What are the costs and what are the benefits?
- Application of quality models can be cost-intensive (time-consuming)

Summary

- Quality and Non-functional requirements
 - Are important for RE
 - Are difficult to elicit, assess, and evaluate
- Application of quality models
 - Defines terminology
 - Supports definition of modeling concepts
 - Is basis for taxonomies

