Qequirememés
Englhneering:
Qu&ti&v Models

© COLLEGE OF ENGINEERING

' CALIFORNIA STATE UNIVERSITY, LONG BEACH

TETEEEEERERARRARAAAAAAAAMA M

R

:
Dean Foro zholshani and the Dean’s Adegﬁ
o

invite you to attend tr‘

\Engineering Distinguished Lecture Series
!

The Age of Drones and New Societal Concerns

Thursday, April 23, 2015

5:00- 5:15 p.m. Registration
5:15- 7:00 p.m. Panel of Experts/Audience Q & A

The Pointe Event and Conference Center at the Walter Pyramid, CSULB

Capstone projects with Intel

* Who is going to do their capstone projects
starting in fall?

* |Interested in doing stuff in RE?
* Be in touch with me.

Summer research assistant

e Who is here over summer and wants to do
some research?

* | got a small grant for working with a student
on a toolkit | want to develop.

e Come talk to me.

Website Web Developer Intern

* True Potential Counseling in Long Beach

* 3 month unpaid internship that has the potential
to become a paid hourly position (10 hour per
week) after the completion of the internship

* Candidate who knows both the front end side of
web development, but also be able to link the
site to back end technology (like aweber,
teleseminar, stripe, 4square and paypal payment
options, membership sites, automated system
set-up) and do SOE

Recap time! NFRs :

e What are NFRs?

—™
&

 What are classification dimensions?
 What are the challenges?

UCI winter 2014

YOU'RE 10
MINUTES LATE,
JiMmy !

IF ONLY JIMMY'D LEARNED ABOUT
NONFUNCTIONAL REQRUIREMENTS.---

THIS THING'S FALLING
APART! LOOK, THAT
WHEEL'S COMING OFF.

IT'S 6OT FOUR
WHEELS AND IT

GOES- WHAT
MORE DO You

AND WHERE WERE YOU LAST
SATURDAY WHEN I WANTED TO ‘ N
GO TO BECKY'S BIRTHDAY) &

Dr. Birgit Penzenstadler PARTY?Z

Requirements Engineering — Outline

WHY do we need Requirements Engineering and what is it?

Principles: Definitions, process, roles, problem/solution view, artifact orientation
System Models: Decomposition and abstraction, system views
Frameworks: What reference structures can | use for requirements?
Business Case Analysis: Why are we building this system?

Stakeholders: Who are the people to talk to about requirements?

Goals and Constraints: What are the major objectives for the system?
System Vision: What exactly do we want to achieve?

Domain Models: What are the surrounding systems ours interacts with?
Usage Models: How will the system interact with the user?

Quality requirements: How to specify which qualities need to be met?
Software quality models: How to determine the quality characteristics?
Process requirements: How to specify constraints for development?
Towards a system specification: How to hand over to design?

Quality assurance: How to ensure that RE is done in a good way?

Change management: How to evolve requirements?

Motivation

[Gongalo Borréga: The truth about non-functional requirements. Blog entry, 2013.
http://www.outsystems.com/blog/2013/03/the-truth-about-non-functional-requirements-nfrs.html]

UCI winter 2014 Dr. Birgit Penzenstadler 8

Functional Requirements and Their
Poor Cousins: The Truth About NFRs

* Whenever anybody says Functional Requirement, | think of
princesses. | think of Arielle and Cinderella. | think of how
each is central to her story and embodies a specific
identity, and then | think of the princess who stands out as
a true metaphor for functional requirements — the one
who reflects the role perfectly. | think of Snow White.

* Snow White is a functional requirement if | ever saw one.
She is at once central to her story, its main protagonist, its
raison d’etre, yet surrounded by a host of supporting
characters — dwarfs — whose roles are necessary for
the story to be complete. No dwarfs, no real story. It’s
that simple. If a single dwarf is missing, the entire story is
compromised. Snow White is compromised.

[Gongalo Borréga: The truth about non-functional requirements. Blog entry, 2013.
http://www.outsystems.com/blog/2013/03/the-truth-about-non-functional-requirements-nfrs.html]

Functional Requirements and Their
Poor Cousins: The Truth About NFRs

And it’s nearly the same with applications. If an application is the

story and Snow White is the functional requirement, then we can think of
dwarfs as non-functional requirements (NFRs). If a single NFR is missing
from an application then that application is compromised. Deploying a
squirrely application is the same as adding maintenance issues and
technical debt directly to your application portfolio. Eventually, that
application will have to be addressed, those NFRs will have to be added,
and the IT department who deployed the app will have to contend with
the cost of changing software.

How does this happen? Changing and maintaining software is hard

and therefore expensive to do and IT departments are often rushed

or underfunded. However, if they are in a ‘Just do it” mode then

those operational, non-functional requirements that make an application
complete are easy to leave out or are ‘forgotten.” The consequences

of leaving these NFRs out of an application lead directly to the
aforementioned maintenance problems and increased technical debt.

Here’s the list of most common NFRs that we see our customers worrying
about:

[Gongalo Borréga: The truth about non-functional requirements. Blog entry, 2013.
http://www.outsystems.com/blog/2013/03/the-truth-about-non-functional-requirements-nfrs.html]

Common NFRs
&

)

W

s N
1. Maintainability 2. Portability
_ . The ease with which software can be
The ease with which the system can be installed on all necessary platforms and the
changed, whether for bug fixes or to add platforms on which it is expected to run.

new functionality. This is important because
a large chunk of the IT budget is spent on
maintenance. The more maintainable a
system is, the lower the total cost of

. . [Gongalo Borréga: The truth about non-functional requirements. Blog entry, 2013.
ownershlp will be. http://www.outsystems.com/blog/2013/03/the-truth-about-non-functional-requirements-nfrs.html]

UCI winter 2014 Dr. Birgit Penzenstadler 11

Common NFRs

v

3. Reliability 4. Scalability
The capability of the software to maintain its Software that is scalable has the ability to
performance over time. Unreliable software handle a wide variety of system configuration
fails frequently, and certain tasks are sizes. The nonfunctional requirements should
more sensitive to failure (for example, specify the ways in which the system may be
because they cannot be restarted, expected to scale up (by increasing hardware
or because they must be run at a certain capacity, adding machines, etc.). Scalability
time). ensures usability for five users or five
thousand. Goneslo orrees]

UCI winter 2014 Dr. Birgit Penzenstadler 12

Common NFRs

5. Flexibility 6. Auditability

If the organization intends to increase or When something goes wrong, you need to
extend the functionality of the software after understand the root cause of it. So it is

it is deployed, that should be planned from normal that auditability is a common NFR.
the beginning; it influences choices made The problem is that you hardly remember to
during the design, development, testing, and have all the checkpoints in the process, all
deployment of the system. Flexibility is the the exceptions logged, and to ensure that the
ease with which the system can be reused, subsystem to support it does not interfere
deployed, and tested. with your application performance.

[Gongalo Borréga]

UCI winter 2014 Dr. Birgit Penzenstadler 13

Common NFRs

[_*-
¢! A \
5 9
? bl '
7. Documentation 8. Performance
It's hard to keep complex The performance constraints specify the
system documentation up to date. Even if timing characteristics of the software. Certain
you’re able to document the initial version of tasks or features are more time-sensitive
your application, by the time you’ve finished, than others; the nonfunctional
the application has changed and its requirements should identify those software
documentation is outdated. functions that have constraints on
their performance. (Gongalo Borrégal

UCI winter 2014 Dr. Birgit Penzenstadler 14

Common NFRs

9. Security 10. Usability

Integrity requirements define the security Usability relates to how easily users can
attributes of the system, restricting access to learn how to use a system and

features or data to certain users and how efficient they are while using it. Highly
protecting the privacy of data entered into usable systems reduce the effort required
the software. to read or input data and prevent users from

making errors resulting
in increased operational efficiency.

[Gongalo Borréga]

UCI winter 2014 Dr. Birgit Penzenstadler 15

Functional Requirements and Their
Poor Cousins: The Truth About NFRs

Like Snow White’s dwarfs these NFRs are necessary to completing the story of the
application. While you might consider 2 or 3 important NFRs for a project (like
performance and security), you’ll probably not cover the others extensively
enough, or you might miss out on them all together.

And if you do allocate time to deal with them all, when the project schedule slips,
the NFRs may be the first thing you’ll drop... because no one really sees them, and
your team will be looking at the functional requirements instead.

So, whether you plan for NFRs or not, chances are high you won’t cover
them 100% of the time in your development project. You’ll compromise and not
think of the whole story — the whole application.

But you should try. You should try to avoid adding technical debt and maintenance
nightmares to your future portfolio whenever possible. The cost of change is real,
and the moment you deploy your app, you’ll have to address its problems.

From your experience what are the NFRs you constantly see developers
and project teams dropping most often?

Quality models and dealing with - NFRs

* Usage of Quality models in RE
»..Exemplary quality models
* Dealing with NFRs in AMDIRE

Usage of quality models in RE

What are quality models?
- Conceptual models for the description of quality.

Usage of quality models in RE

e Definition and assessment of software quality —
beginning in RE

e Quality assurance, for example of artefacts in RE

* Also: Classification of requirements according to
characteristics

18

Usage of quality models in RE

Classification on the basis of quality models
* Classification of non-function requirements according to
characteristics.
— Which different classes of requirements exist?
— Which aspects are important to consider?
— Which modeling concepts and interdependencies are important to

consider?
C\rtefact-based RE Approach for Business Information Sy (Basic C
° ° ° ~ N -
Delimitation: Artefact models
oy ol B DULE S,
° I d | I b . | d I . t d I e e Specification L Eng
e a y u I O n q u a I y m O e S = aliiF= _4_______: quuirements (Process Model
i pecification .
y i LTE o 11_ <> Project Scope

(compare to system models) " = | T[S

ik i System Specification

—> Concept model (Content Model).- — o=

—> Structure of the concept model
(Structure Model)

er, stoq}k_.x‘ch ng

UCI winter 2014 Dr. Birgit Penzenstadler 20

Excursion: Quality models

Quality models

 Determine which quality aspects and concepts exist and how these are
related

e Support the structured elicitation and modeling of quality requirements
- E.g. via a taxonomy of quality attributes

Examples:
* (lassification acc. to Boehm (1978)
* |EEE 29148 Software Requirements l Quaity |
Documentation Standard (2011)
. | | 1 |

* ISO/lEC 9126 (1993’ reVIsed 2001) Effectiveness Efficiency Satisfaction Safety com(:)cr,;‘;ee::sive
e TUM S&SE Quality Model = = = - =

ectiveness iciency urpose conomic lexibility
Challenges: oot || eattnand || comploteness

— Many different quality aspects and Comiort || Emroomentai
relations between them harm sk

— Systematics in their application in RE [ISO Std.] (Excerpt)

(as well as application in assessment)

21

Example: Taxonomy of quality
attributes (QuaMoCo)

Error protection |

Operability

| Usability

Accessibility |

<

Learnability |

Functional correctness |

Functional Suitability Functional appropriateness|

Functional completeness |

Response time |

Time behavior

Quality in End-Use N Throughput |
Reliability |
Confidentiality |
{ Security
Integrity |
Economic damage risk |
| Safety Health and safety risk |
Environmental harm risk |
Analyzability |
Maintainabili Modifiabili
B - | Testability |
Verifiability
Reviewability |
Ouality in Development
and Evolution Configurability |
Releasability
Installability |
Reusability |
CPU Consumption |
Executability Memory Consumption |
{ " Quality in Operation Co-existence |
Aucxiliary Quality Attributes
Supportability |
[Quality in Business |——] Appraisability | | Adaptability |
. .. . [Portability |
Institut flir Informatik
[Performance | 22

Chair IV: Software & Systems Engineering

Assessment of quality models

* Exemplary quality models determine the taxonomy of
quality criteria and attributes

Critical aspects
 The models often stay on the abstract level of ,,-ilities”

- No statement about measurability and assessment of
quality criteria

* No direct applicability to RE

— No clues for explicit deduction of required system
characteristics

Example: The demand for multi-language documentation supports maintainability, but also usability.

— Other non-functional aspects are often not covered

23

NFR Taxonomy acc. to
Axel van Lamsweerde

Nor-functional requirement

E A T

Quality of service Compliance Architectural constraint Development constraint

P ANt AN / \\

Safety Security Reliability Performance interface Installation Distribution Cost Maintainability

/ \\ \\C‘ON Deadline Variability

Confidentiality Integrity Availability Time Space User Device Software
interaction interaction interoperability

Sub-class link / \

Useability Convenience

24

ATM Examples for NFR Taxonomy by
Lamsweerde

Non-functional requirement

2N e

Quality of service Compliance Architectural constraint Development constraint
-
- Security of The security concept The ATM uses data The full fungtionality
personalized data has to adhere to encryption. shall be available by
- Availability of the IEC 61508 Standard. May 2014.
AMT (= adequate
- architecture)

25

Summary

= Significance of existing NFR Taxonomies for RE:
— Support structuring of NFRs
— Define terminology
Assessment w.r.t. challenges:
Crosscutting Concerns
Interdependencies with fctl. requirements/ behavior models not clearly defined
Elicitation, assessment and evaluation
Refinement of non-fctl. requirements across various levels of abstraction?

N2 20 2

Evaluation of non-functional requirements w.r.t.
— Interdependencies with other (NF) requirements?
— Implications for implementation/costs?

\Z

Measurable specification of non-functional requirements?

26

