Requirements
Englheering:
Classification of nown-
ﬂfww&mmat requiremevx&s

Recap time! ’}l{;&\
| AV
* Usage Model //
— What is it? How is it defined?
— What is it for? Why do we need it?

— What are the two major elements?

— How are they defined? How to differentiate?

Motivation

YOU'RE 10 IF ONLY JIMMY'D LEARNED ABOUT
MINUTES LATE, NONFUNCTIONAL RERUIREMENTS.- --

JiMmy ! _ = 3

&

THIS THING'S FALLING

APART! LOOK, THAT
WHEEL'S COMING OFF.

AND WHERE WERE YOU LAST N[l
SATURDAY WHEN T WANTED TO 'Y Y@
GO TO BECKY'S BIRTHDAY
PARTY?

IT'S GOT FOUR
WHEELS AND IT
GOES. WHAT
MORE DO You
WANT?

CSULB spring 2015 Dr. Birgit Penzenstadler

WO NOU A WNE

=
= O

O e T o S T S R
Nou bk wnN

Requirements Engineering — Outline

WHY Requirements Engineering?
Principles

System Models

Frameworks

Business Case Analysis

Stakeholders

Goals & Constraints

System Vision

Domain Models

Usage Models

Classification of non-functional requirements
Quality Models and how to deal with NFRs
System Specifications

Requirements Engineering Process
Quality Assurance

Change Management, Risk Management
Continuous Improvement

Classification of non-functional
requirements

Quality of a product

Dimensions for the classification of
requirements

Examples
Challenges with NFRs

Which product is of higher quality?

,Quality is a complex and
multifaceted concept.”

= Garvin

 Quality is often determined by - ——
not or hard to measure system | ~— |
characteristics PR M
(,,In the eye of the beholder.”)

—>What are non-functional
requirements?

- Which interdependencies do
non-functional requirements
have with other classes of
requirements?

“182mA

......

Multimedia

‘‘‘‘‘‘‘‘‘

snnnnsnniing

Classification of requirements: @
Dimensions Qantitative

1. Formalisation

Qualitative
2. Degree o
of ab;trgchon o informal formal
3. Qualitative and quantitative abstract
4. Functional, non-functional Abstract Formal, abstract
requirements requirements
= Choice of degree of precision
— For making
qualitative/quantitative
statements Concrete Formal, concrete
— For classifying requirements LIS requirements
into functional/non-functional.
concrete

Example v

 The system is easy to use!
— Functional/qualitative implementation: The system shall have a help function
that provides the user with support at any time.

— Non-functional/quantitative: The typical user understands the system after 10
minutes of training.

A rough classification of requirements

Functional requirements: All requirements refering to
functionality (to functional behavior)
— Qualitative: Which behavior is correct (compare Use Cases)

Non-functional requirements:
,Everything that is not functiona
— Quantitative system characteristics: quality (realiability,
performance, security, usability, adaptability, ...)
— Constraints for the implementation (programming language,
operating system, off-the-shelf components, ...)
— Requirements w.r.t. the development process (process model,
documentation, development standard, milestones, costs, ...)

Furthermore: Objectives with regard to marketing, rights,
deployment and operating constraints, etc. ...

III

Quality requirements
(1st Classification)

Requirements to the quality characteristics of the system

e Quantitative characteristic w.r.t. the behavior and the
functional usage (,,Quality in Use”)
Examples:

— Usability
— Reliability

* Characteristics, that exceed the functional usage of the
system (remaining ,,Product quality”)
Examples:
— Maintainability
— Reusability

ATM
Examples?

Simple textual template

NFR <description>

Rationale <goal the requirement is derived from>
Satisfaction criterion <metric that needs to be achieved>
Measurement <how the metric will be measured/determined>
Risk <in case this is requirement is not met>

UCI winter 2014 Dr. Birgit Penzenstadler 10

Constraints (1st classification)

* (Project-specific) process requirements are
requirements for the development process
Examples:

— Process model
— Project plan (milestones, budget, deadlines)
— Quality assurance (application of security norms)

* Implementation constraints and constraints and
limitations for the implementation

(Product Constraints) '//’],4

Examples:
— Structure/Architecture,
— Platforms and technologies

ATM
Examples?

™
2 o

Non-functional requirements in practice
(Examples)

Vi Udawilily ivimiy) ASYSIGHT GUITIPULIETIL Dllcn DAY v w
users edits when ever possible. }

JO10PEO1 Performance The perceived response time shall
(NFR) not be too high. &
 RR——— BN

Which problems may arise
with this requirement?

12

Non-functional requirements in practice
(Examples)

Tamel T T T T T T T T T T R e | e
holder | [| | ystems |
Vv Ubdawilily uvirny) A SYSIEHT CUITTIPUITIETIL Dllci DAY w _,D_, | L] | I
users edits when ever possible. ' \ { - :
_______ Lo TS
NI oo lh ol L comen
JO10PEO1 Performance The perceived response time shall -7 3T~ T s “:U;g;.
(NFR) not be too high. : \“*Q. ‘\‘ M°“e': !
L »C :
g L =]
ey p 1 i
On which abstraction) |
. o jerarchy | 1
level does this R
- I
requirement belong? B
I
-
o Riéquirements

LN ll’Component Model ,l

HOW COUId We \\\ BehaviourModel: Port 1 \\“~ / Component 1 /:’:

. . p V I

specify this p states || .

e O O'Q* i gty ||

requirement in a N s :
measurable way? '

System

Non-functional requirements in practice
(Examples)

“The system shall be maintainable.”

On which abstraction
level does this
requirement belon

How could we
specify this
requirement in a
measurable wa

, 0
0
10
03

Functional |
Hierarchy |

——— e e— = ——

_—— e =

:Component Model 'I

- IComponent 1)

| Behaviour Model | 0 J

\
| < States l’
: A AT
|
|
| Component ...
|

System

) mportant g

Summary: 3 challenges

1. Crosscutting Concerns: qualitative/quantitative statements
— Partially w.r.t. functionality (e.g. performance)
— Partially across functionality (e.g. maintainability)
2. Elicitation, assessment and evaluation
— Often general wish w.r.t. characteristics, but not concrete
— No statement to which extent the characteristic must be present

— Requirements (and implementation) possible on different levels of
abstraction with different concepts (and expressivity)

— Abstraction levels influence modeling concepts and characteristics (as
well as interdependencies), and therefore also the classification

3. Classification of non-functional requirements

— Depends on the underlying quality model
— Depends on the underlying system model and modeling concepts

15

TR

onuc

SOFTWARE QUALI"FY:

THE ELUSIVE T4

TIHON

Reading

L\v"é?’ ET

BARBARA KITCHENHAM, National Computing Centre

SHARI LAWRENCE PFL

If you are a software developer,
manager, or maintainer, quality is
often on your mind. But what do

yout veally mean by

quality? Is your definition
adequate? Is the software you
produce better or worse than you

ould like it to be? In this special

issue, we put software quality
on trial, examining both the
definition and evaluation of our
soft

ware products and processes.

1 the recent past, when bank ;
statements contained errors |

or the telephone networ
broke down, the general pub-
ssually blamed “the computer,

lie

making no distinction between ;

hardware and software. Howeve
high-profile disasters and the ensu

ing debates in the press arc alerting |

more people to the crucial nature

of software quality in their every-

day lives. Before long, we can ex-
pect increasing public concern
about the pervasiveness of soft

ware, not only in public services |
but also in consumer products like |
automobiles, washing machines, :

telephones, and electric shavers.

Consequently, we software profes- |

sionals need to worry about the
quality of all our products — from
large, complex, stand-alone sys-
tems to small embedded ones,
So how do we assess “adequa
quality in a software product? The

12 0748-7480/08/405.00 © 1008 1€t

Authonized licansed use limited to; T U MUENCHEN. Downloadad on July 10,2010 at 08:03:15 UTC from IEEE Xplore. Restrictions apply.

GER, Systems/Software, Inc.

context is important. Errors toler-
ated in word-processing software
may not be acceptable in control

nuclear-power plant.

softwarc’s contribution to the
larger functionality and quality of
products and busincsses. At the

ity goals and making sure they are
achieved.

WHAT DOES QUALITY
REALLY MEAN?

Most of us are affected by the

And most software-
related tools and methods — in.
cluding those described in JEEE
Software — claim to assess or im-

JANUARY 1996

Rethinking the Notion of Non-Functional Requirements H-6
Rethinking the Notion of Non-Functional Requirements

Martin Glinz

Department of Informatics, University of Zurich
Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
glinz@jifi.unizh.ch
http://www.ifi.unizh.ch/~glinz

Abstract. Requi dards and books typically classify require-
ments into functional requirements on the one hand and attributes or non-func-
tional requirements on the other hand. In this classification, requirements given
in terms of required operations and/or data are considered to be functional,
while performance requirements and quality requirements (such as require-
ments about security, reliability, maintainability, etc.) are classified as non-
functional.

In this paper, we present arguments why this notion of non-functional require-
ments is flawed and present a new classification of requirements which is based
on four facc!s Iumi (e £ function, performance, or constraint), representation
(e.g. op ive or qualitative), satisfaction (hard or soft), and role
(e.g. prescriptive or assumptive). We define the facets, discuss typical combi-
nations of facets and argue why such a faceted classification of requirements is
better than the traditional notion of functional and non-functional requirements.

1 Introduction

Quality, as defined by ISO 9000:2000 [8], is the “degree to which a set of inherent
characteristics fulfils requirements”, where a requirement is a “need or expectation
that is stated, generally implied or obligatory”. Hence, quality and requirements are
closely intertwined concepts.

A lot of effort has been put into classifying qualities, the quality models by Boehm
[2], McCall and Matsumoto [12] and ISO/IEC [9] being the best known ones. For
example, the ISO/IEC 9126 model classifies qualities at the top level into function-
ality, reliability, usability, efficiency, modifiability, and portability.

Analogously, there have been many efforts to classify requirements and to estab-
lish links between qualities and req\nrements. In every currcnt requu'emems classifi-
cation, we find a distinction between fi ! and for
example [6], [10], [11]. Davis [3] makes the same distinction, but calls them behav-
ioral vs. non-behavioral requirements. Functional requirements are defined as those
requirements that “describe what the system should do™ [14], while all other require-
ments are considered to be non-functional.

However, there is no consensus, and it is in fact not clear, what a non-functional
requirement really is. Firstly, we find rather divergent concepts for sub-classifying
non-functional requirements. Davis [3] regards them as qualities and uses Boehm’s

Proceedings of the Third World Congress for Scftware Quality. Munich, Germany, September 2005. 1-55

Context Layer !

Preview 1: Philosophy [. == (&= [,5=

N

- L

% Stakeholder Model
« AMDIRE concept model based on £ %—1 %
system model and quality model N
. . I, —
* Behavior models are in the center for ‘3;\///// =
functional requirements and A\
quality requirements < 0
CIaSSiﬁcation Of NFRS //7\\\\\\\) Process Requiremen
* Process Requirements dc\%% =
* Deployment Requirements) | oemoment Requrmens
. \l\ * So T
* System Constraints s L) | S
* Quality Requirements g%g K ="
o o . 4 \ —
Structured elicitation of - e —— =
quality requirements ‘g W= 1 ﬁl_
= [=
* From system goals o .
. I 'system Layer — =~ \ ! l\
¢ TO Scenarlos : //y{’ _/\T:::ctureOverview\ (‘ Fvunclion Model\ (‘ Data Model
- . [} Fun 1
e To quality requirements VW el [og‘
£ u - —
| [—ado = }

Preview 2: Overview of relevant W
Content Items

1. Process Requirements: Required
characteristics of the process/ project

e.g.: Use RUP as process model

2. Deployment Requirements: Demands
for deployment

e.g.: strategy to be followed for data migration

3. System Constraints: System-related
restrictions that don‘t necessarily
results from functional goal.

E.g.: usage of specific technologies

characteristics of the system

examples following

