
Standard Course Outline for CECS 542: Requirements Engineering
(3 Units)

I. General Information
A. Course Number: CECS 542
B. Course Title: “Requirements Engineering”

C. Units: 3
D. Prerequisites: CECS 343 or other basic knowledge about the principles of software engineering and
the software lifecycle.
E. Responsible Faculty: Dr. Birgit Penzenstadler, Department of Computer Engineering and Computer
Science;
F. Standard course outline prepared by Birgit Penzenstadler, September 13th , 2015

II. Catalog Description

This course aims to equip students to develop techniques of software-intensive systems through
successful requirements analysis techniques and requirements engineering. Students learn systematic
process of developing requirements through cooperative problem analysis, representation, and
validation.
Lecture 2 hours. Semester long team project plus final exam. Letter grade only (A-F).

III. Student Learning Outcomes
After completing the course students will be able to elicit, analyze, document and verify and validate
requirements. In particular, they will be able to perform:

• Stakeholder identification and analysis
• Goal identification and analysis
• Creating and refining a system vision
• Developing a domain model of all involved application domains
• Developing a usage model (in the form of UML use cases)
• Eliciting and specifying quality requirements
• Quality assurance techniques
• Requirements management

IV. Curriculum Justification
This course is the essential stepping-stone for conducting successful large, complex software
engineering projects. It introduces students in depth to requirements engineering, which lays the
foundation for design and all subsequent development phases. It prepares students for complex projects
by introducing them to a variety of techniques that enable to analyze and specify requirements from
different application domains and stakeholders. The course provides students with the necessary
skillset to communicate, analyze, and negotiate with a wide range of potential stakeholders in a project.

V. Outline of Subject Matter
This course exposes students to the problem of determining and specifying what a proposed software
system should do, why and for whom the system is needed, not how the system should do it, which is
the topic of downstream software engineering activities such as design and coding. There are some
nontechnical aspects of the course, with respect to communication and negotiation with multiple
stakeholders. Most of the course covers technical approaches to the requirements problem, such as
techniques for eliciting stakeholder goals and requirements, notations and models for documenting and
specifying requirements, strategies for negotiating requirements, and techniques for analyzing
documented requirements. In detail, the course covers the following topics (1 per week):
1. Why do we need Requirements Engineering and what is it?
2. Principles: Definitions, process, roles
3. System Models: Decomposition and abstraction, system views
4. Frameworks: What reference structures can I use for requirements?
5. Business Case Analysis: Why are we building this system?
6. Stakeholders: Who are the people to talk to about requirements?
7. Goals and Constraints: What are the major objectives for the system?
8. System Vision: What exactly do we want to achieve?
9. Domain Models: What are the surrounding systems ours interacts with?
10. Usage Models: How will the system interact with the user?
11. Software quality models: How to determine the quality characteristics?
12. Quality requirements: How to specify which qualities need to be met?
13. Quality assurance: How to ensure that RE is done in a good way?
14. Change management: How to evolve requirements?

VI. Modes of Instruction
The class consists of traditional lectures from faculty and of lab discussion sessions. While there is no
official lab time assigned with this class, the assignments that are carried out in teams will be discussed
together in class. Students will benefit from structured lectures that cover an adequate number of
examples to facilitate student learning and introduce students to the topics covered. The instructor will
introduce all requirements engineering methods and techniques tin lectures using a number of examples
and hands-on collaborative exercises. Also students will be provided with individual and team
assignments and projects that are done outside of class.

VII. Textbook Information
There is no particular textbook assigned to this course. Dr. Penzenstadler detailed the outline presented
above in exemplary slide sets and assignments that she will make available to all instructors for
reference. Further material can be taken from the books referenced in Section X of this document.

VIII. Instructional Policies Requirements
Instructors may specify their own policies with regard to plagiarism, withdrawal, absences, etc., as long
as the policies are consistent with the University policies published in the CSULB Catalog. It is
expected that every course will follow University policies on Attendance (PS 01-01), Course Syllabi
(PS 04-05), Final Course Grades, Grading Procedures, and Final Assessments (PS 05-07), and
Withdrawals (PS 02-02 rev).

IX. Distance Learning/Hybrid Courses
This course will be taught in a traditional format where students attend in-class lectures and carry out
assignments individually and in teams.

X. Bibliography
This is a highly selective bibliography to provide instructors with a primary set of resource materials.
To ensure brevity, important works may be missing from this list. The list is intended to show the range
of materials available to our students.

• Karl Wiegers and Joy Beatty: “Software Requirements”

• Axel van Lamsweerde: “Requirements Engineering”

• Klaus Pohl: “Requirements Engineering”

XI. Student-Level Assessment
The exact set of course assignments will vary depending on the instructor. University policy requires
that no single evaluation of student achievement may count for more than one-third of final grade.
Appropriate assessment tools include quizzes, exams, written homework, computer-programming
assignments and oral presentations.
Sample assignments:

• Eliciting and documenting the stakeholders for a software system.

• Developing a use case in UML.

• Performing a review of quality requirements.

XII. Course-Level Assessment
The exact set of course assignments will vary depending on the instructor. University policy requires
that no single evaluation of student achievement may count for more than one-third of final grade.
Appropriate assessment tools may include quizzes, exams, written homework, computer-programming
assignments and oral presentations. The suggestion is:
1. A semester-long requirements engineering project, composed of individual, written assignments (to

practice and demonstrate the skills from the course objectives above).

2. A final examination in form of a written test or an essay.

XIII. Consistency of this Standard Course Outline across Sections
The course coordinator will review this SCO and offer advice and/or materials to each faculty member
new to teaching the course. All future syllabi will conform to the SCO. The course coordinator may
offer or require regular review of instructors’ course materials as well as anonymous samples of student
work.

